Choosing safe dispersing media for C60 fullerenes by using cytotoxicity tests on the bacterium Escherichia coli.

نویسندگان

  • Sean M Cook
  • Winfred G Aker
  • Bakhtiyor F Rasulev
  • Huey-Min Hwang
  • Jerzy Leszczynski
  • Jessica J Jenkins
  • Vincent Shockley
چکیده

Assessment of C(60) nanotoxicity requires a variety of strategies for dispersing it into biological systems. Our objective was to determine organic solvent/surfactant combinations suitable for this purpose. We used Escherichia coli (ATCC# 25254) to determine the cytotoxicity of C(60) in solvents at concentrations up to 100 ppm. In this preliminary study we hypothesized that C(60) toxicity is directly correlated with its degree of dispersion in solution and that more solubilizing solvents induce higher toxicity. Test solvent concentration (1%) and Tween 80 (0.04%) were based on E. coli viability assay. Sonication was used to further enhance C(60) dispersal. The end-point response was measured with viability (in terms of LC(50)) and general metabolic activity (in terms of IC(50)) of E. coli cultures after exposure. The ultimate goal was to select safe dispersing media and enrich the database of C(60) nanotoxicity for NanoQuantitative-Structure-Activity-Relationship (NanoQSAR) applications. LC(50) range was 30 ppm to >400 ppm. IC(50) followed the trend. Among the six solvent combinations, DMSO combined with Tween 80 was the optimum combination for defining a dose-response relationship for assessing its toxicity to E. coli. However, N,N-dimethylformamide has the greatest potential to be a safe solvent for C(60) applications based upon its biocompatibility. Solvent solubility alone could not account for the cytotoxicity observed in this study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacterial cell association and antimicrobial activity of a C60 water suspension.

Prior to the implementation of any new technology, possible environmental and health repercussions first must be researched. Fullerenes are to be produced soon on an industrial scale, with applications quickly following. To investigate the possible environmental impact of fullerenes, a C60-water suspension (nano-C60) was synthesized and then evaluated for cell-association and toxicity, using th...

متن کامل

Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles.

The production of reactive oxygen species (ROS) by aqueous suspensions of fullerenes and nano-TiO2 (Degussa P25) was measured both in ultrapure water and in minimal Davis (MD) microbial growth medium. Fullerol (hydroxylated C60) produced singlet oxygen (1O2) in ultrapure water and both 1O2 and superoxide (O2-*) in MD medium, but no hydroxyl radicals (OH*) were detected in either case. PVP/C60 (...

متن کامل

Cloning and sequencing of ompf Salmonella typhi Salmonella ompf gene in Escherichia coli Origami

Background and Aim: Salmonella Typhi belongs to the family Enterobacteriaceae, gram-negative bacilli and causes gastrointestinal diseases such as typhoid. This bacterium has a special structure and various genes, including the ompf gene (outer membrane protein). Recent studies have shown the possibility of using ompf in the development of a diagnostic tuberculosis vaccine. Therefore, the aim of...

متن کامل

Preparation and characterization of O/W nanoemulsion with Mint essential oil and Parsley aqueous extract and the presence effect of chitosan

ABSTRACT Objective(s): The oil-in-water (O/W) nanoemulsion is expanded in biomedical application due to their special properties. Mint and Parsley are known herbs with many health benefits. Chitosan (Ch) is a low toxic, biodegradable, biocompatible and safe polymer with the antibacterial activity which is used in production of nanomaterial. The aim of this study was to evaluate the nanoem...

متن کامل

Investigation of Biofilm ability by Microtiter Plate Method in uropathogenic Escherichia coli isolated from patients with urinary tract infection with urinary stones.

Abstract: Background and Aim: Urinary tract infections are one of the most commonly reported nosocomial infections caused by colonization of E. coli in the mucosal epithelium and in the formation of microbial biofilms, which damage the host tissue. The aim of this study was to determine the amount of biofilm formation of uropathogenic E. coli based on urinary tract stones of people with urin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 176 1-3  شماره 

صفحات  -

تاریخ انتشار 2010